skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antonson, Nicholas D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Drilling and tapping behaviors in woodpeckers have long garnered significant attention, given their extreme, high-impact nature. However, how these birds integrate neuromuscular and respiratory systems to produce such high-force, high-frequency behaviors remains poorly understood. Here, we combined electromyography with measures of respiratory air-sac pressure and syringeal airflow to investigate the neuromuscular and ventilatory mechanisms of forceful pecking in downy woodpeckers. We found that both types of pecking behaviors tested engage skeletal muscles across the head, neck, hips, tail and abdomen. In-depth analysis of EMG timing and activity point to a hammer-like model associated with drilling, whereby head and neck muscles contract to create a stiffened cephalo-cervical lever arm that efficiently transfers kinetic energy from the swinging bill into the wood. Moreover, hip flexors help power protraction of the head and body for drilling, whereas tail muscles presumably help brace the bird's body against the tree. Respiratory analyses show that woodpeckers actively exhale with each bill strike of the substrate, resembling the ‘grunting’ behavior that human athletes use to stabilize their core and enhance force output. These effects persist at high tapping frequencies, indicating that individuals take mini-breaths between successive taps. Altogether, our results highlight the way motor and respiratory systems are leveraged to facilitate the production of extreme behavior, which hinges on biomechanical specializations and extraordinary performance abilities. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026